U-2 Avionics Upgrade Paves Way For Command And Control Role

ATR-configured aircraft
The first ATR-configured aircraft will have initial capability in 2021 with upgrades to other aircraft to follow from 2022 onward.
Credit: Lockheed Martin Concept

After shrugging off the recurring threat of replacement by unmanned systems, the U-2S is poised for a comprehensive avionics upgrade that Lockheed Martin says will position the spy plane for follow-on capability enhancements and a new lease on life at the heart of the U.S. Air Force’s ambitious Advanced Battle Management System (ABMS) command and control plan.

  • Avionics Tech Refresh includes new mission computer and cockpit displays
  • Update provides bridge to follow-on upgrades planned under Dragon STAR
  • The ATR-configured U-2S may be used as a testbed for ABMS, Lockheed says

The Air Force’s $50 million investment in Lockheed Martin Skunk Works’ Avionics Tech Refresh (ATR) upgrade forms the latest part of a broader update plan funded through fiscal 2025 and underpins the service’s renewed intent to grow the strategic and tactical roles of the venerable intelligence, surveillance and reconnaissance (ISR) platform. It also confirms Air Force plans to keep the U-2S in service as a complement to the unmanned Northrop Grumman RQ-4 Global Hawk, reversing earlier moves to sunset the fleet.

“We’re really breathing new life into the capabilities of this platform,” says Irene Helley, U-2 program director for Lockheed Martin Skunk Works. “Most of these jets were being built in the late 1980s and ’90s and have only averaged about 17,000 flight hours, so [they] have about 80% of their airframe life remaining and still have so much more to give.” 

The upgrade is “about growing the mission,” Helley adds. “We are revamping all of the avionics [in a] system [that] really hasn’t been revisited since the early 2000s.”

Lockheed says the updated avionics system provides the backbone for enhanced mission capabilities and will build a bridge to a wider series of follow-on upgrades. Internally called Dragon STAR (Sensors Technology and Avionics Refresh), this broader long-term initiative also includes additional sensor technology and systems updates. 

The core of the avionics suite update is “a replacement for the existing avionics processor, which is experiencing a lot of diminishing manufacturing sources,” says Sean Thatcher, U-2 modernization program manager. Finding a replacement “is really the genesis from where the ‘tech refresh’ components came in for the aircraft,” he adds.

Other key elements include a mission computer, which “is actually a new addition to the U-2, and that’s really what starts to grow the mission itself,” Thatcher says. 

The mission computer is designed to the Air Force’s open mission systems (OMS) standard, which will enable the aircraft to integrate at various security levels with systems across air, space, sea, land and cyber domains. “We’re taking the OMS standard throughout the entire suite, so everything will be able to ride within the same network. Instead of being federated and their own little system, they’ll now be able to communicate with one another to allow that broader system to be much more capable.”

Lockheed confirms the upgrade incorporates the Enterprise Mission Computer 2 (EMC2), a company-developed system nicknamed the “Einstein Box” that first publicly emerged in mid-2017, when it was tested on a modified U-2 taking part in demonstrations of advanced battlefield communications systems during a training exercise. Originally described as a “plug-and-play” system that bolts on to the avionics processor, the EMC2 also incorporates wider capabilities including dynamic mission replanning, ISR and electronic warfare capabilities.

The update also includes modern touch screen cockpit displays. “We are making those displays higher resolution for the pilots to see more and do more within the same physical area,” says Thatcher. “They will have a higher pixel resolution as well as add some touch playing abilities. And we are also looking at upgrading other cockpit systems, to bring it up to a more modern standard.” 

There also will be a focus on software-driven display changes, he adds. “Pilots will be able to have more interaction with maps and other information that you would see in a modern jetliner.” The provider of the display system has not yet been announced.

The U-2S cockpit was last modernized under the Reconnaissance Avionics Maintainability Program, which was completed in 2007. As well as providing a new main avionics processor, three 6 X 8-in. multifunction displays and a secondary flight display system, the upgrade also included a BAE Systems ALQ-221 advanced defensive system that incorporated both electronic countermeasures and radar warning receivers.

Helley says the enhanced displays will enable pilots to “collect data and respond faster” as well as “allow them to make better and [more] informed decisions.” Part of this will include communicating and connecting with both fourth- and fifth-generation aircraft via multiple tactical data links such as Link 16, the F-35’s fast-switching narrow directional multifunction advanced data link and the F-22’s low-probability-of-detection and low-probability-of-intercept inflight data link. Given that none of these data links are compatible, the U-2S will communicate with all versions through the EMC2.

aircraft upgrade diagram
Avionics upgrades (marked in squares) will enable a raft of follow-on system updates that dovetail with others already underway. Credit: Lockheed Martin

The ATR upgrade puts the high-altitude-capable U-2 on the path toward providing the Air Force with a key node in the service’s ABMS network construct, a vision that Lockheed Martin has been steering the aircraft toward for several years. Originally conceived as the Airborne Battle Management System, the “A” now stands for “Advanced” and embraces a more comprehensive Air Force ambition to share data with and between Army, Navy and Marine Corps assets across land, sea, air and space domains. Now, as the Skunk Works begins funded work on the initial U-2 avionics modification, Lockheed also believes the company’s ability to fast-track development efforts could play a key role in early test and deployment of the ABMS.

“There’s so much talk about what the future holds for JADC2 (joint all-domain command and control),” Helley says. “Because of our ability to take the concept straight to demonstration—and then to have the capability in the field in months, rather than years—the U-2 has really become the perfect testbed to prove out those capabilities. With this avionics tech refresh effort, we’re looking to be the first fully OMS-compliant fleet out there in the Air Force today.”

The upgraded U-2 “really is going to be kind of a testbed truck for whatever those future platforms of 2030 will look like,” Helley says. “It will be able to buy down the risk of those technologies and also serve the warfighter in today’s mission abroad.” Lockheed aims to field an interim capacity beginning as early as mid-2021 and hopes to begin the whole fleet modification effort in early 2022.

Looking further ahead under the Dragon STAR plan, the ATR “bridges the way for the U-2 mission to add in next-generation sensors such as a radar or electro-optic/infrared sensor up in the nose,” Thatcher says. “We are also looking at opportunities for Sigint [signals intelligence] to be able to come in rapidly.” In addition to providing a “gateway in the sky” for tactical data links, he adds the upgrade plan “will also look at increasing the bandwidth that can go over some of the existing links as well, both on the line-of-sight and beyond-line-of-sight links.”

workers rebuilding aircraft
The rebuild of damaged U-2S 80-1099 is underway following loading of the fuselage into the RF50 tool. Credit: Lockheed Martin

Many of these elements are either already underway or in planning. Flight tests of the first production version of the upgraded Raytheon ASARS-2B primary surveillance radar are due to start in 2021, although the Air Force is expected to issue a request for proposals for the follow-on ASARS-2C upgrade in fiscal 2022. The move to the -2C standard will involve upgrading the radar processor to exploit the full potential of the active, electronically scanned array antenna being introduced with the -2B.

The Air Force, Lockheed and Collins Aerospace also announced in February that flight testing and deployment of the latest variant of the Senior Year Electro-Optical Reconnaissance System (SYERS) sensor, SYERS-2C, has been completed. Meanwhile, Northrop Grumman is upgrading the Airborne Signals Intelligence Payload system that flies on the U-2 to provide cybersecurity and systems enhancements. Improvements to the BAE Systems ALQ-221 advanced defensive system are also included in the upgrade.

“We are talking about being able to host agile pods that give new mission capability at a rapid pace to support any given warfighter needs that come up,” Thatcher adds, referencing systems such as the recently developed Air Force Research Laboratory Agile Pod—a reconfigurable sensor and communications payload system.

The overall upgrade plan also addresses improvements to the aircraft’s future precision navigation and timing (PNT) capability. U-2 pilots are now being given Garmin D2 Charlie wristwatches that provide location and waypoint positioning information based on GPS and Global Navigation Satellite System signals to augment the aircraft’s navigation systems. However, for the near term, navigation enhancements will include improved map displays as part of the cockpit avionics upgrade.

Other, longer-term changes are planned, including adding a star-tracking system and replacing the current inertial navigation and GPS system. “We are definitely looking at being able to provide that [capability] into the backbone of the aircraft, too, and to not have the pilots need that reliance upon other technologies,” Thatcher says. “That’s not to say that they would ever get rid of [the wrist watch] or not want to have it as a comfort zone. But we ultimately want to have [enhanced navigation capability] baked in as the ultimate PNT source for the U-2, and also to have the ability to share that data with the other systems that are onboard the aircraft.”

Along with these operational improvements, other upgrades are in the works to address obsolescence concerns with airframe sustainment, the helmet and full-pressure suit, and Universal (formerly Unmanned) Aerospace Systems Command and Control Standard Initiative standards compliance. Beyond this, more upgrades—some of them secret—are planned, says Helley. “There are a number of other refresh modernization efforts that we are working on with our affiliates, but right now we’re still in the early planning phases of those efforts. We are not quite to the place where we can talk about them in greater detail, and a number of those items will probably remain on the classified side of the fence,” she adds.

Expanding U-2S mission capability forms one of three strategic program goals for the airframe, Helley says. “For the modernization, we’ve been growing our engineering and manufacturing team.” Another is growing the fleet. “So we’ve been working in ways to increase the rate at which we do PDM [programmed depot maintenance], as well as introducing another tail number back into the fleet,” she adds, referring to the refurbishment of tail number 80-1099. That aircraft is a single-seat model that was damaged in an August 2008 ground accident at Al Dhafra airbase, in the United Arab Emirates. Together with the rebuilt aircraft and four two-seat trainers, the planned upgraded fleet will number 31 aircraft.

“They recently loaded that tail [1099] into the main tool, which begins the main rework on the areas that were damaged,” Helley says. “So the restoration processes will be worked on over the next year. It will be immediately followed by program depot maintenance, and they’re anticipating a return to service as early as 2022.” 

Guy Norris

Guy is a Senior Editor for Aviation Week, covering technology and propulsion. He is based in Colorado Springs.

Comments

2 Comments
No U2 is invulnerable. Remember Frances G powers, over Russian airspace.
Neither are satellites. Global communication links guiding UAV's can be disrupted. This is a pragmatic and sensible response to the development and deployment of anti-satellite systems by potential adversaries. Losing one's eyes and ears at the outset of hostilities is not desirable. These are national assets. It is prudent to maintain and upgrade such a versatile fleet.