The delayed September launch of a commercial Proton rocket is Russia's latest justification for ending reliance on the Baikonur Cosmodrome, the world's oldest and largest spaceport situated in the desert steppes of neighboring Kazakhstan.

Although Russia lofts many scientific and military spacecraft from Plesetsk Cosmodrome north of Moscow, commercial and government launches to geostationary orbit—the destination of most telecommunications satellites—can be conducted only from Baikonur, where more than half of Russia's campaigns and all manned missions to the International Space Station (ISS) are launched.

Since 2005, when Moscow ratified a long-term extension of its rental agreement with Kazakhstan, it has disputed the amount Russia pays for launches from the spaceport and has sought to limit such missions. Last year, the two governments tangled over safety concerns with Soyuz rockets, which dump spent stages on Kazakh territory during missions that take a northerly trajectory.

In July, tensions increased following the spectacular failure of a Russian Proton M/Block DM3 that crashed seconds after liftoff from its Baikonur launch pad, releasing tons of highly toxic fuel into the air. The Proton's return to flight, carrying the Astra 2E satellite for Luxembourg fleet operator SES, was slated for Sept. 17. But Kazakhstan's environmental worries contributed to a half-month delay to the commercial mission, which at press time was scheduled for Sept. 30.

To reduce its reliance on Baikonur, Moscow is investing in a new launch site in Russia's far-eastern Amur region. Under construction since 2011, the new Vostochny Cosmodrome is running a few months behind schedule, Russian government officials say, but initial missions are still scheduled to begin in 2015 with the launch of Soyuz-2, the newest iteration of Russia's venerable three-stage rocket.

By 2020, Vostochny is planned to loft nearly half of all Russian missions, including the new Angara family of rockets that will replace most Soviet-era launchers, such as Proton, and all manned space flights. The goal, according to Russian officials, is to reduce launches at Baikonur to 11% by the end of the decade, from 65% today.

“By 2020, the new heavy-launcher Angara is planned for launch at Vostochny, and after that, 2030, we plan to finalize and put into operation a reusable rocket and space system,” said Sergey Saveliev, deputy head of Russian space agency Roscosmos, during the 64th annual International Astronautical Congress here last week.

Russia's new Angara rocket family, in development at the Khrunichev State Research and Production Space Center since the mid-1990s, is based on the liquid oxygen/kerosene-powered URM-1 Common Core Booster (CCB). More environmentally friendly than Soviet-era launchers, the Angara line will rely on a single CCB to power the light-weight Angara 1.2; the heavy-lift Angara A7, designed to launch manned missions to the Moon and beyond, will require up to seven boosters.

In addition to launch facilities and an automated ground control and instrumentation complex at Vostochny, Moscow is developing a tourism center, scientific research and education facilities and a test and integration site in a nearby town. Some hardware production facilities may also be moved to the Amur region to reduce transit costs and create jobs.

By 2030, the cosmodrome is expected to support advanced space missions, including manned exploration, using electric and nuclear-powered interplanetary tugs for lunar and deep-space campaigns.

“The plan is to use the Vostochny space port primarily for our human spaceflight program,” says Alexey Krasnov, Roscosmos director of human spaceflight, notably in support of a new transportation system that he says will be capable of carrying four crew. “However, initially we will use it for launching conventional vehicles that we are using today. We'll start with cargo vehicles, like Progress, then transfer to the Soyuz vehicles, which are being modified.”

The new cosmodrome will also support Russia's communications, relay, navigation, remote-sensing and disaster-monitoring satellite programs, as well as “initial use of manned and unmanned spacecraft for in-orbit servicing, including their refueling,” says Aleksey Romashkin of Russia's Central Research Institute for Machine Building.

Over the next two decades, Vostochny will enable an ambitious slate of space endeavors, including plans to deploy new modules to Russia's ISS segment that could serve as the basis for a national space station program after the ISS is decommissioned, or function as free-flying assets for missions in high Earth orbit. A lunar surface descent/ascent complex for operating in a low-gravity environment is also in the works, as are robotic spacecraft for Moon exploration and, ultimately, a permanent lunar base.

“We wish to combine our resources in low Earth orbit and exploration,” Krasnov says. “That's how we structure it, with robotics and human spaceflight programs, which could be a very good combination.”