HUMS: By the Numbers

- 30% reduction in mission aborts
- 20% reduction in maintenance test flights
- 5% to 10% reduction in scheduled maintenance
- Enhanced safety: A proactive approach heads off accidents before they happen. Data signaling potential problems on one aircraft can be used to comprehensively analyze an entire fleet.
- Increased availability: Better maintenance planning means less unplanned downtime, faster turnaround and increased mission readiness to support the warfighter.
- Reduced costs: CBM substantially cuts maintenance/testing costs in the near term and over the life cycle of the aircraft and avoids costs of spare parts, dedicated test flights and asset recapitalization.

How Does Condition-Based Maintenance Work?

- Onboard Data Acquisition Unit collects analog data from sensors embedded throughout an aircraft's drivetrain and converts it to digital.
- Data downloaded by the ground support crew can be used to monitor the health of a single aircraft or an entire fleet.
- Diagnostic algorithms automatically analyze acquired data providing a comprehensive indication of aircraft machinery health.
- Software and web-based tools communicate needed repairs and suggest maintenance actions.

Mission Readiness and Cost Avoidance

- $101 million cost avoidance over 22 months
- 66% reduction in mission aborts due to vibration over 5 years
- Avoided 2,957 mission main hours 2007-2008

A Record Of Savings, Readiness Improvements

- CBM complements performance-based logistics, the U.S. DOD’s preferred defense systems support/government strategy.
- CBM system is to be included on all U.S. DOD vehicles, based on business case analysis (U.S. DOD Instruction 4151.22, dated 2 Dec 2007).

Find out more about Honeywell Aerospace on Google+ at goo.gl/u46aw.