Growing interest in small satellites and, just as important, the problem of how to launch them affordably, could provide hypersonic system developers with a long-awaited first step on the way to reusable, routine access to space.

Piece by piece, parts of the puzzle that may conceivably drive down costs to as low as $300,000 per launch, are falling into place, according to hypersonic researchers at Boeing. Building on these pieces, the company has unveiled a small launch vehicle (SLV) concept aimed at the smallsat market, and it could be in service as early as 2020.

Unlike many previous ideas for air-breathing, multi-stage small launch systems, the SLV comprises elements that, in some cases, are already flying. Including the Scaled Composites-designed WhiteKnightTwo (WK2) carrier aircraft that would air-launch the three-stage vehicle, virtually every technology required for the SLV is therefore either developed or at a high-technology readiness level, says Kevin Bowcutt, Boeing's chief hypersonics scientist. Sized initially to carry payloads up to 100 lb., the SLV would employ two reusable air-breathing stages and a third stage made up of an expendable or reusable rocket.

“The cost of launching small satellites is three to ten times that of larger payloads, so is there any way of bringing it down? There are two main things I've learned: First, to get the cost down, you cannot throw away the hardware—throw away little or none, if possible. Second, you need a high utility rate. To get costs down to $300,000 or less per launch that vehicle must fly 100 to 150 times per year,” says Bowcutt.

The downward trend in satellite size, emergence of fractionated satellites and the low cost of on-demand launch capability itself will encourage market growth, Bowcutt asserts. Potential drivers include the delivery of small payloads to orbital outposts such as the International Space Station or Bigelow space habitats, as well as evolving markets ranging from on-demand tactical reconnaissance and weather monitoring to satellite servicing and space debris deorbiting.

Measuring almost 75 ft. in length and weighing slightly less than 25,000 lb., the SLV stack is nominally sized to be carried beneath the WK2 in the same way as the Virgin Galactic SpaceShipTwo. Like the Orbital Sciences L-1011 launcher, the carrier aircraft can take the SLV to an “optimal launch location,” says Bowcutt. Benefits include flexible basing and getting around any weather issues at launch, he notes.

The delta-winged first stage borrows several design features of the XB-70 supersonic bomber, including a raised forward fuselage, two-dimensional mixed-compression wedge inlets and compression lift. Boeing's study evaluated several propulsion options for the first stage, which is designed to reach a staging Mach number of 4.5 before releasing the second stage. Options include the Atrex air-turbo ramjet with expander cycle, an experimental precooled engine under development by the Japan Aerospace Exploration Agency that works as both a turbojet and ramjet.

Other candidates were a liquid oxygen/kerosene-powered air-turbo rocket or a turbine engine integrated with a mass injection pre-compressor cooling (MIPCC) system. In this engine a fluid, usually water, is mixed with the incoming airstream to decrease the total temperature of the flow.

MIPCC systems have been studied since the late 1950s and proposed for previous space-access programs including the Defense Advanced Research Project Agency's Rascal (rapid-access small-cargo affordable launch) initiative in the early 2000s. “The engine has no clue it is flying at Mach 4.5; it thinks it's at Mach 2,” says Bowcutt. The air-launched, two-stage Rascal was aimed at placing a 75-kg (165-lb.) payload into low Earth orbit for $750,000, but was canceled in 2005.

The first stage connects to the rest of the stack via a nose-mounted folding interstage arrangement, which Boeing says is fully reusable apart from frangible pyrotechnic separation nuts. The interstage carries the structural loads while attached to the second stage; after separation, the component folds flush with the nose for return to the launch site. “We have two other [interstage] concepts which we're not sharing,” says Bowcutt.

The second stage is a 37-ft.-long, hypersonic waverider design with “an inward-turning inlet that feeds a circular combustor scramjet,” says Bowcutt. The second stage takes over at Mach 4.5 and accelerates to Mach 10 for the final staging of the rocket-powered third stage. “The wing, fuselage and flowpath are integrated to provide high aero-propulsive efficiency,” says Thomas Smith, Boeing associate technical fellow and co-concept designer. The baseline design has a “sugar-scoop” three-dimensional inlet, but Boeing says the second stage could also employ a two-dimensional planar inlet and combustor such as that used on the X-51A.

The third stage, “nested” in the trough in the upper surface, will be deployed with a trapeze mechanism to ensure safe separation. The vehicle, measuring roughly 16 ft. long, will be powered by a solid- or liquid-fueled rocket with thrust-vector control and a specific impulse of 300 sec. The payload will be carried in a 21 X 38-in. volume within the nose, and is designed with sufficient space for up to four Poly Picosatellite Orbital Deployers (P-POD) or a single payload.

The proposed mission profile would see the SLV carried by the WK2 to a release altitude of 30,000-40,000 ft. Following air-launch, the first stage would accelerate at a constant altitude until the flight dynamic pressure (Q) reaches 2,000 psf, at which point it would climb and maintain this pressure until the first staging point of Mach 4.5 at 61,000 ft. The first stage would then execute a 2g turn and return to land on its own retractable gear.

The second stage will accelerate to Mach 10 at 95,000 ft. using its scramjet before releasing the rocket, or will pull up to a higher altitude and lower Q before releasing the third stage. Boeing's study also includes a possible recoverable third stage with a biconic aeroshell and body flaps for control. The vehicle also would use its own propulsion system and deployable legs for a vertical landing similar to demonstrated concepts such as the DC-X and Masten Space Systems' Xombie and Xaero.

Boeing is agnostic over the whether the concept is developed for commercial or military users, and believes the SLV could be applicable to all comers, says Bowcutt. “At $300,000 per launch, we believe a lot of people will come to market.”